第52章 我!陆时羡!宝刀未老[2/2页]
天才一秒记住本站地址:[妙书网]https://m.miaoshula.org最快更新!无广告!
> nbsp(1)对i\u003d1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+π)\u003dfi(x);
nbsp(2)对任意的实数x,有f(x)\u003df1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。
nbsp题目看起来非常简洁,可是陆时羡知道最后的解答过程是题目的数倍,可能还不止。
nbsp时间不多,陆时羡决定先解决第一题。
nbsp陆时羡用屁股想都明白,凡是跟圆周率π挨上边的基本上就跟周期函数挂钩了。
nbsp他直接策反了敌方f(x)两员大将的g(x)与h(x),且g(x)是偶函数,h(x)是奇函数,对任意的x∈R,g(x+2π)\u003dg(x),h(x+2π)\u003dh(x)。
nbsp然后分别代入四条函数fi(x),i\u003d1,2,3,4。得到四条函数f1(x)、f2(x)、f2(x)、f4(x)的表达式。
nbsp故fi(x),i\u003d1,2,3,4是偶函数,且对任意的x∈R,fi(x+π)\u003dfi(x)。
nbsp这个倒是简单,极有限次数的验证只需要分别代入验证就行了,不费脑子。
nbsp陆时羡觉得只要次数在10以下,他都能接受,无非就是费点笔芯而已。
nbsp毕竟总比看半天题目无从下手的强。
nbsp不过此题好像还是给了参赛者一些余地,因为陆时羡发现第二问与第一问的关联很大。
nbsp将刚刚第一问得到的代数式代入f(x)\u003df1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
nbsp接下来,分情况讨论就完事了。
nbsp因为f1(x)、f2(x)、f2(x)、f4(x)因为x的取值范围,从而存在6种情况。
nbsp其中有两种已经无需讨论,已经是从实招来。
nbsp还有四种情况依然负隅抵抗,陆时羡只好使出假设杀威棒。
nbsp最后它们终于被屈打成招,也因此证明了所有六种情况完全成立。
nbsp综上所述,此式成立得证!
nbsp陆时羡长吐一口气,再用余光看向周围时,诺大的教室居然只剩下他一个人。
nbsp他忽然心里一慌,时间还没结束啊,不会吧?
nbsp自己花这么大力气证明的题目,别人这么快就做完了?
nbsp是我老了提不动屠龙刀了,还是现在的小朋友太厉害?
nbsp他一抬头,就看着监考员直盯盯地望着他。
nbsp什么意思?是我让你失望了吗?
nbsp对不起我道歉,我承认我真的是个数学渣渣。
nbsp他颇为忧郁地起身交卷,然后收拾行李,准备离开这个伤心地。
nbsp可没想到当他离开的时候,背后传来监考员的赞叹声。
nbsp“哎呦,不错哦!这个考场的人早就放弃提前走了,只有你还在默默坚持。”
nbsp陆时羡:nbsp?nbsp???
nbsp“不管对错,你能做完,也不愧我盯你一个人盯了一个小时了。”
nbsp陆时羡:nbspε?nbsp(?>nbsp灬nbsp<)?3
nbsp陆时羡本来低潮的心情又渐渐回升起来。
nbsp这意思好像是我还算可以,宝刀未老啊!
喜欢。
第52章 我!陆时羡!宝刀未老[2/2页]
『加入书签,方便阅读』